Cool, say now we have a huge population with characteristics ( Mu, Sigma^2 ). When doing a study by sampling, we take a random sample ( size n items ) and then perform the study on the sample and conclude results back for the population. From Central Limit Theorem, we know that the sample mean will always follow a normal distribution apart from what the population distribution is, such that: x_bar ~ N (Mu, Sigma^2/n) or say: Expected (x_bar) = Mu Variance (x_bar) = Sigma^2/n Well, let's see a simple illustrating example: Suppose we have a population with mean Mu=100 . Now, we have taken a sample, and computed the sample mean, x_bar. We mostly will have x_bar near 100 but not exactly 100. OK, let take another 9 separate samples... suppose these results: First sample --> x_bar = 99.8 Second sample --> x_bar = 100.1 .. .. .. 10th sample --> x_bar = 100.3 What we see that the sample mean is usually...
Comments
Post a Comment